Downward Closed Topology On With Its Effect On The Levels Of

Salahddeen Khalifa

Department of Mathematics, Faculty of science, University of Gharyan email: Ksalahddeen@yahoo.com

Submission date : 22-12-2022 Acceptance date : 27-2-2023 Electronic publishing date: 28-02-2023

Abstract: Since many facts about the natural numbers N in the number theory had been established with the usual divisibility that is defined on N. Then to connect these facts with some topological properties on $\mathbb N$ for some topologies that are defined on $\mathbb N$, some topologies, that depend on the divisibility, have been defined. In this paper, we study a topology that is defined on N and also depending on the usual divisibility, this topology is the topology that contains the set of all downward closed subsets of N and it is called downward closed topology on N. Furthermore, The relation between the divisibility and the limit points, and the topological relation between the levels of $\mathbb N$ have discussed.

Keywords: Downward closed topology, Natural numbers set, divisibility.

1- Introduction

 In [5], we have used the upward closed topology that is defined on N to connect the usual divisibility that is defined on N with the limit points. Furthermore, the relation between the divisibility and the limit points, and the topological relation between the levels of N , which is the numbers that are in the up levels are limit points to the lower levels, have studied.

 In this work, we introduce a topology and study The relation between the divisibility and the limit points, and the topological relation between the levels of N.

(a) Numbers concepts

If the set of natural numbers N has been given. We say that $a \in \mathbb{N}$ divide $b \in \mathbb{N}$ if there is $c \in \mathbb{N}$ such that $b = a.c$ and we denote that by a/b . For all $a, b \in \mathbb{N}$ we say that $c \in \mathbb{N}$ is the greatest divisor of *a* and *b* if *c*|*a, c*|*b* and if $d|a, d|b$ then $d \leq c$, and we denote that by $(a, b) = c$. If $a \in \mathbb{N}$ and a is divided by 1 and itself, then we say that *a* is prime number and we denote the set of prime numbers by P. If $(a, b) = 1$, $a, b \in \mathbb{N}$ we say that *a* and *b* are relative prime.

Lemma 1.1 [2] Every $n \in \mathbb{N}, n > 1$, is divisible by a prime number.

Theorem 1.1 The Unique Factorization Theorem [2]

Any natural number greater than one can be written as a product of primes in one and only one way. i.e. for any $n \in \mathbb{N}, n > 1$ can be written in exactly one way in the form

$$
n = p_1^{e_1} p_2^{e_2} \dots \dots p_k^{e_k}
$$
 where, $e_i \ge 0$,
\n $p_i \in P$, $i = 1, 2, \dots, k$, and $p_i \ne p_j$.

 We call this representation by the Prime-Power Decomposition of *n*.

 One of the results to the Unique Factorization Theorem, we can divide the set of natural numbers into infinitely many levels L_i , where $i \geq 0$ such that $L_0=$ {1},

 $L_i = \{a_1, a_2, \ldots, a_i; a_1, a_2, \ldots, a_i \in P\}$ where $i \geq 1$.

 $\mathbb{N} = \bigcup_{i=0}^{\infty} L_i$ and $L_i \cap L_j = \emptyset$, where $i \neq j$ ($\bigcap_{i=0}^{\infty}$ $L_i = \emptyset$)

For any $a \in \mathbb{N}$, $a \uparrow = \{ n \in \mathbb{N} : a | n \} = \{ ma : m \in \mathbb{N} \}$

The collection of upward closed subset of N is $\mu = \{ A \subseteq \mathbb{N} : A = A \uparrow \}$ where $A \uparrow = \{ n \in \mathbb{N} : \exists a \in A, a | n \}$ For more details, see [4].

(b) Topological Concepts[3,6]

If X is any set, the collection τ of subsets of X is called topology on X if satisfying the following conditions: the empty set \emptyset and X belong to τ , arbitrary union of elements of τ belongs to τ , and any finite intersection of elements of τ belongs to τ . We say that (X, τ) is a topological space. A subset U of X is called an open set if $U \in \tau$, and a subset F of X is called closed if $X-F \in \tau$.

A collection $\beta \subset \tau$ is called a base for a topological space (X, τ) if $\tau = \{U_{\text{B} \in \eta} \mid B \colon \eta \subset \beta \}$.

 A limit point of a set *A* in a topological space X is a point $x \in X$ such that each open set contained *x* also contains some points of *A* other than *x*. i.e. $A \cap (U - \{x\}) = \emptyset$, for any open set U, $x \in U$, the limit points of a set A denote by ́ . A set *A* is closed if and only if contains all of its limit points. Closure of a set A is denoted by \overline{A} , and defined by $\overline{A} = A \cup \overline{A}$. The set A in a topological space X is dense if $\overline{A} = X$.

Lemma1.2 [5] The collection of upward closed subsets of N defined topology on N i with the base $\beta = \{ n \uparrow : n \in \mathbb{N} \}.$ We denote to a topological space $\mathbb N$ with μ by (\mathbb{N} , μ).

Lemma 1.3 [5] In the space (\mathbb{N} , μ) of upward closed subset of N :

- **(a)** *a* is a limit point for {b} if and only if $a|b, a \neq b$.
- **(b)** $\{a\}' = \{n \in \mathbb{N} : n | a, n \neq a\}$, for any $a \in \mathbb{N}$.
- **(c)** *n* is a limit point for *A* if and only if there exists $a \in A$, $n|a$, and $n \neq a$.
- **(d)** $A' = \{ n \in \mathbb{N} : \exists a \in A, n | a, n \neq a \}$ for any $A \subseteq \mathbb{N}$.

2- Downward closed subsets of

Some of the subsets of N contain all the numbers that are divide their numbers, these sets are called downward closed subsets of N and the set that contains all of the downward closed subsets of N is called the collection of downward closed subsets of N as it will be defined in the following definition.

Definition 2.1 [1] **(a)** For any $a \in \mathbb{N}$,

 $a \downarrow = \{n \in \mathbb{N}: n | a\}.$ **(b)** The collection of downward closed

subset of N is $\nu = \{A \subseteq \mathbb{N} : A = A \downarrow \}$ where $A \downarrow = \{n \in \mathbb{N} : \exists a \in A, n | a\}.$

Example 2.1 $1 \downarrow = \{1\}$, $3 \downarrow = \{1,3\}$, $P \downarrow = P \cup \{1\}, \{1,2\} \downarrow = \{1,2\}.$ $(P \cup \{1\}) \downarrow = (P \cup \{1\})$

Lemma 2.1 (a) $A \subseteq A \downarrow$, for any $A \subseteq \mathbb{N}$. **(b)** $1 \in A$ for any $A \in \nu$, $A \neq \emptyset$. (c) \emptyset , $\mathbb{N} \in \nu$ **(d)** $L_i \notin v$ for all $i \geq 1$. **Proof**: **(a)** Obvious. **(b)** Obvious. **(c)** It's clear that is $N \in \mathcal{V}$. If there exists $n \in \emptyset$, then there exists $a \in \emptyset$ such that *n*|*a*, but this is impossible, so $n \notin \emptyset \downarrow$ and $\emptyset = \emptyset \downarrow$. **(d)** L_{*i*} \downarrow = $\bigcup_{j=0}^{i}$ L_{*j*} for all *i* ≥ 1. ■

Lemma 2.2 (a) $A^c \in \mu$ for any $A \in \nu$. **(b)** $A^c \in v$ for any $A \in \mu$. **Proof:** (a) Let $A \subseteq \mathbb{N}$, $A \in \mathcal{V}$. If $A = \emptyset$ or N then $A^c = N$ or \emptyset , so $A^c \in \mu$. If $A \neq \emptyset$, N, let $n \in \mathbb{N}$, a/n for some $a \in A^c$, and if $n \in A = A \downarrow$, then there exists $b \in A$, n/b , so a/b , $a \in A$, so we have a contradiction. Thus $n \in A^c$, $A^c = A^c \uparrow$ and $A^c \in \mu$ **(b**) Similar to (a) ■

Lemma 2.3 (a) $n \downarrow$, $A \downarrow$ are downward closed sets for any $n \in \mathbb{N}, A \subseteq \mathbb{N}$ **(b)** If A is downward closed then $A \downarrow = (A \downarrow) \downarrow$. **Proof: (a)** Obvious. **(b)** Let $A \in \nu$, $(A \downarrow) \downarrow = \{ n \in \mathbb{N} : \exists a \in A \downarrow, n/a \}$ $= \{ n \in \mathbb{N} : \exists a \in A, n/a \} = A \perp$

Lemma 2.4 (a) If $n_1, n_2 \in \mathbb{N}$, $n_1 | n_2$, then for any $A \in v$ contains n_2 contains also n_1 **(b)** If $n_1, n_2 \in \mathbb{N}$, $n_1 | n_2$ then $n_1 \downarrow \subseteq n_2 \downarrow$ **Proof:** (a) Let $n_1, n_2 \in \mathbb{N}, n_1|n_2$, and let $A \in v$, $n_2 \in A$, so there exists $a \in A$, $n_2|a$, and $n_1|a$. Thus $n_1 \in A$. **(b)** Let $n_1, n_2 \in \mathbb{N}$, $n_1 | n_2$, and let $n \in n_1 \downarrow$, so $n|n_1$, and $n|n_2$. Thus $n \in n_2 \downarrow$, and $n_1 \downarrow \subseteq n_2 \downarrow.$ ■ **Lemma 2.5 (a)** If $A \subseteq B$, then $A \downarrow \subseteq B \downarrow$ for any *A*, $B \subseteq \mathbb{N}$. **(b)** If *A*, $B \in \nu$, then $A \cap B \in \nu$, $(\bigcap_{i=1}^{n} A_i \in v, \text{ where } A_i \in v, i = 1, 2, ..., n).$ **(c)** If $A, B \in \nu$, then $A \cup B \in \nu$, $(U_{i=1}^{n} A_{i} \in v, \text{ where } A_{i} \in v, i = 1, 2, ..., n).$ (d) $\bigcup_{i=1}^{\infty} A_i \in v$, where $A_i \in v$, $i = 1, 2, \ldots$ **Proof:** (a) Let *A*, $B \subseteq \mathbb{N}$, $A \subseteq B$, $n \in \mathbb{N}$, $n \in A \downarrow$, so there exists $a \in A$, $n|a$, so $a \in B$, $n \in B \downarrow$. Thus $A \downarrow \subseteq B \downarrow$. **(b)** Let $A, B \in \nu$, then $(A \cap B) \downarrow = \{ n \in \mathbb{N} : \exists a \in A \cap B, n | a \}$ $=$ { $n \in \mathbb{N}$: $\exists a \in A$, $n|a$ } \cap { $n \in \mathbb{N}$ $\exists a \in B, n | a \}$ $= A \downarrow \cap B \downarrow = A \cap B.$ **(c)** Let $A, B \in \nu$, then $(A \cup B)$ $\downarrow = \{n \in \mathbb{N} : \exists a \in A \cup B, n | a\}$ $=$ { $n \in \mathbb{N}$: $\exists a \in A$, n/a } U ${n \in \mathbb{N}: \exists a \in B, n/a}$ $= A \cup \cup B \cup = A \cup B$ **(d)** Similar to (c) ■

Theorem 2.1 (a) If $A \subseteq \mathbb{N}$ is downward closed set, then $A = \bigcup_{\alpha \in A} a \downarrow$. **(***b*) $v = \{ \bigcup_{a \in A} a \downarrow : A \in v \}.$

Proof: (a) Let $A \subseteq \mathbb{N}$ is downward closed set, and $n \in A$, then there exists $a \in A$ such that $n|a|$, so $n \in a \downarrow$, and $n \in \bigcup_{a \in A} a \downarrow$. Thus

$$
A \subseteq \bigcup_{a \in A} a \downarrow.
$$

On the other hand, if $n \in \bigcup_{a \in A} a \downarrow$, then there exists $a \in A$, $n \in a \downarrow$, so n/a , and *n* ∈A \downarrow . Thus $\bigcup_{a \in A} a \downarrow \subseteq A \downarrow = A$. Therefore $A = \bigcup_{a \in A} a \downarrow$

(b) By (a) and definition of downward closed ■

Theorem 2.2 ⋃ $_{i=0}^k$ L_i, where k … are downward closed subsets of N .

Proof : Let L_i be any level of N , where $j > k$, and let $n \in L_i$ then, $n = a_1^{n_1} a_2^{n_2} \dots a_i^{n_j}$ where, $n_1 + n_2 + \cdots + n_i = j$, and $a_1, a_2, \dots, a_i \in P$, so *n* can't divide any number in L_i , where $i \leq k$. Thus $(\bigcup_{i=0}^{k} L_i) \downarrow = \bigcup_{i=0}^{k} L_i$ for all $k = 0, 1, 2, \dots$ ■

3- Downward Closed Topology On N

The collection of downward closed subsets of N define topology on N . This topology gives a connection between the usual divisibility that is defined on N and the limit points in way similar to the way that gave in the upward closed topology that was defined on N. Moreover, in $\mathbb N$ with this topology the numbers that are in the up levels are limit points to the lower levels.

Lemma 3.1 (a) The collection of

downward closed subsets of N define topology on N. **(b)** The collection $\mathbf{B} = \{n \downarrow : n \in \mathbb{N}\}\$ is a basis for *ν.* **Proof:** (a) Let $v = \{A \subseteq \mathbb{N} : A = A \}$ where $A \downarrow = \{ n \in \mathbb{N} : \exists a \in A, n | a \}$. **(1)** Since $\mathbb{N} \downarrow = \mathbb{N}$, $\emptyset = \emptyset \downarrow$, then \mathbb{N} , $\emptyset \in \mathcal{V}$ (2) If $A_1, A_2, \ldots, A_n \in \nu$, then by (Lemma $(2.5)(b)) \bigcap_{i=1}^{n} A$ **(3)** Let $A_{\gamma} \in \nu, \gamma \in \Gamma$, then $A_{\gamma} \downarrow = A_{\gamma}$ $\forall \gamma \in \Gamma$ and $(U_{\gamma \in \Gamma} A_{\gamma})$ $\downarrow = \{n \in \mathbb{N} : \exists \alpha \cup_{\gamma \in \Gamma} A_{\gamma}, n | \alpha \}$ $=\bigcup_{v\in\Gamma}\{n\in\mathbb{N}:\exists a\in A_{v},n|a\}$ $=U_{\nu\in\Gamma}(A_{\nu}\downarrow)=U_{\nu\in\Gamma}A_{\nu}$ So $\bigcup_{\gamma \in \Gamma} A_{\gamma} \in \nu$. Thus, *v* defined topology on N

(b)By (Theorem (2.1) (a)) for any $A \in \nu$, $A = \bigcup_{n \in A} n \downarrow$. Thus *ß* is a basis for *ν*.

We denote to a topological space $\mathbb N$ with *ν* by ($\mathbb N$, *ν*).

Lemma 3.2 In the space N with downward closed topology*.*

(a) *a* is a limit point for {*b*} if and only if $b|a, a \neq b$.

 $(\mathbf{b})\{a\}^{\prime} = \{n \in \mathbb{N}: a|n, n \neq a\}$, for any $a \in \mathbb{N}$. **(c)** *n* is a limit point for *A* if and only if there exists $a \in A$, $a|n, n \neq a$.

 (\mathbf{d}) $A' = \{ n \in \mathbb{N} : \exists a \in A, a | n, n \neq a \}$ for any $A \subseteq \mathbb{N}$.

Proof: (a) (\Rightarrow) Let *a*, $b \in \mathbb{N}$, *a* is a limit point to $\{ b \}$, since $a \downarrow$ is an open set, *a* ∈ *a* ↓. So {*b*} ∩ (*a* ↓ −{*a*}) \neq Ø, and $b \in a \downarrow$. Thus $b|a, a \neq b$.

 (\Leftarrow) Let *a*, *b* ∈ *N*, *b*|*a*, *a* ≠*b*, and let *U* is an open set, $a \in U$, by (Lemma (2. 4)(a)) we have $b \in U$, so $\{b\} \cap (U - \{a\}) \neq \emptyset$. Thus, *a* is a limit point to {*b*}*.*

(b) By (a) If $n \in \mathbb{N}$, $a|n, n \neq a$, then *n* is a limit point to {*a*}*.* Thus

 ${a}^{\prime} = {n \in \mathbb{N}: a|n, n \neq a}.$

(c) (⇒) Let $n \in \mathbb{N}$, $A \subseteq \mathbb{N}$, n is a limit point to *A*, since $n \downarrow$ is an open set, $n \in n\downarrow$, so $A \cap (n\downarrow - \{n\}) \neq \emptyset$, and there exists $a \in A$, $n \downarrow$, $a|n, n \neq a$.

 (\Leftarrow) Let $A \subseteq \mathbb{N}$, $a \in A$, $n \in \mathbb{N}$, $a|n, n \neq a$, and let *U* is an open set, $n \in U$. By (Lemma (2.4) (a)) we have $a \in U$, so $A \cap (U - \{n\}) \neq \emptyset$. Thus, *n* is a limit point for *A*.

(d) By (c) if $a \in A$, $a|n, n \neq a$, then *n* is a limit point for *A*. Thus $\overrightarrow{A} = \{n \in \mathbb{N} : \exists a \in A, a | n, n \neq a\}$

Corollary 3.1 In the space (N, v) , for any $n \in \mathbb{N}$, $n > 1$. *n* is prime number or a limit point to $\{n_i\}$ for some *i* where n_i is prime number.

Proof: By (Lemma 1-1) and (Lemma 3.2 (a)) \blacksquare

Corollary 3.2 In the space (N, v) . (a) If $a|b$, then $\{b\}' \subset \{a\}'$ **(b)** For any $A \subseteq \mathbb{N}$, A' is upward closed subset of N. **Proof:** (a) Let $a|b$, and $n \in \mathbb{N}$, $n \in \{b\}$,

then by (Lemma 3.2 (a)) $b|n$, so $a|n$, and by (Lemma 3.2 (a)) $n \in \{a\}$. Thus ${b}^{\prime} \subset {a}^{\prime}.$

References

[1] B. Sobot, Divisibility order β $\mathbb N$ arXiv:1511.01731v2 [math. LO] 17 May 2016

(b) Let $n \in \mathbb{N}$, $a|n$ for some $a \in \hat{A}$, so by (Lemma 3.2 (c)) $n \in \hat{A}$, and since $\hat{A} \subseteq \hat{A}$, so $n \in \hat{A}$. Thus $\hat{A} = \hat{A} \uparrow$, $\hat{A} \in \mu$.

Corollary 3.3 In the space (\mathbb{N} , μ). *A*['] is downward closed subset of N, for any $A \subseteq \mathbb{N}$.

Proof: By (Lemma 1.1 (a)) and similar to (Corollary 3.2 (b)) \blacksquare

Corollary 3.4 In the space (\mathbb{N} , ν). $A \subseteq \mathbb{N}$ is closed if and only if for any $a \in A$, $a|b$. $b \in A$.

Proof:(\Rightarrow) Let *A*⊆N is closed, and *a*∈ *A*, $a|b$. So, $b \in A'$, and since the closed set contains all its limit points, so $b \in A$ (←) Let $A ⊆ N$, $a ∈ A$, $a | b, b ∈ A$. So $b ∈ A'$ and since b is an arbitrary number in N , so *A* contains all its limit points and is closed. ■

Theorem 3.1 In the space (N, v) , the numbers that are in the up levels are limit points to the lower levels*.* **i.e**. $L'_i = \bigcup_{j=i+1}^{\infty} L_j$, where $i = 0, 1, 2, \dots$ **Proof:** Let L_i , L_i are two levels of N , where $j > i$ and let $a \in L_i$, so $a = n_1^{e_1} n_2^{e_2} ... n_j^{e_j}$ where $n_1, n_2, ..., n_j \in P$, $e_1 + e_2 + \dots + e_i = j$. And, let $n = n_1^{e_1} n_2^{e_2} \dots n_i^{e_i} \in L_i$, where { $\{\vec{n}_1, \vec{n}_2, \dots, \vec{n}_l\} \subset \{\vec{n}_1, \vec{n}_2, \dots, \vec{n}_j\},\$ $\acute{e}_1 + \acute{e}_2 + \cdots + \acute{e}_i = i$, so $n | a$, and by (Lemma 3.2 (c)) α is a limit point to L_i . If $a \in L_k$, where $k \leq i$, then $a \downarrow$ is an open set and $L_k \cap (a \downarrow -\{a\}) = \emptyset$. Thus α is not a limit point to L_k . So $\mathbf{L}_i = \bigcup_{j=i+1}^{\infty} \mathbf{L}_j$, where $i = 0, 1, 2, \dots$ ■

Corollary 3.5 In the space (N, ν) **(a)** $(\bigcup_{i=0}^{k} L_i)' = \mathbb{N} - \{1\}$ for all

- **(b)** $\overline{\bigcup_{i=0}^{k} L_i} = \mathbb{N}$ ($\bigcup_{i=0}^{k} L_i$ are dense for all $k = 0.1, 2, \dots \dots$.
- [2] D. Underwood, Elementary number Theory. Second edition 2008, Dover publications,Inc.Mineola, New York

- [3] L. Azriel, Basic set Theory 2002, Dover publications, DJVU, 5.13 MB
- [4] S. Khalifa, A. Abominjil, Levels of Natural Numbers 2022, Gharyan University Journal
- [5] S. Khalifa, Upward Closed Topology On N With Its Effect On The Levels Of N 2022, Zawia University Journal
- [6] S.Willard, General Topology. 2004 Dover Publications,Inc,Mineola,New York, o-486-43479-6