Downward Closed Topology On N With Its Effect On The Levels Of N

Salahddeen Khalifa

Department of Mathematics, Faculty of science, University of Gharyan email: <u>Ksalahddeen@yahoo.com</u>

Submission date : 22-12-2022 Acceptance date : 27-2-2023 Electronic publishing date: 28-02-2023

Abstract: Since many facts about the natural numbers \mathbb{N} in the number theory had been established with the usual divisibility that is defined on \mathbb{N} . Then to connect these facts with some topological properties on \mathbb{N} for some topologies that are defined on \mathbb{N} , some topologies, that depend on the divisibility, have been defined. In this paper, we study a topology that is defined on \mathbb{N} and also depending on the usual divisibility, this topology is the topology that contains the set of all downward closed subsets of \mathbb{N} and it is called downward closed topology on \mathbb{N} . Furthermore, The relation between the divisibility and the limit points, and the topological relation between the levels of \mathbb{N} have discussed.

Keywords: Downward closed topology, Natural numbers set, divisibility.

1-Introduction

In [5], we have used the upward closed topology that is defined on \mathbb{N} to connect the usual divisibility that is defined on \mathbb{N} with the limit points. Furthermore, the relation between the divisibility and the limit points, and the topological relation between the levels of \mathbb{N} , which is the numbers that are in the up levels are limit points to the lower levels, have studied.

In this work, we introduce a topology and study The relation between the divisibility and the limit points, and the topological relation between the levels of \mathbb{N} .

(a) Numbers concepts

If the set of natural numbers \mathbb{N} has been given. We say that $a \in \mathbb{N}$ divide $b \in \mathbb{N}$ if there is $c \in \mathbb{N}$ such that b = a.c and we denote that by a|b. For all $a, b \in \mathbb{N}$ we say that $c \in \mathbb{N}$ is the greatest divisor of a and b if c|a, c|b and if d|a, d|b then $d \leq c$, and we denote that by (a, b) = c. If $a \in \mathbb{N}$ and a is divided by 1 and itself, then we say that a is prime number and we denote the set of prime numbers by P. If (a, b) = 1, $a, b \in \mathbb{N}$ we say that a and b are relative prime.

Lemma 1.1 [2] Every $n \in \mathbb{N}, n > 1$, is divisible by a prime number.

Theorem 1.1 The Unique Factorization Theorem [2]

Any natural number greater than one can be written as a product of primes in one and only one way. i.e. for any $n \in \mathbb{N}, n > 1$ can be written in exactly one way in the form

 $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where, $e_i \ge 0$, $p_i \in P, i = 1, 2, \dots, k$, and $p_i \ne p_j$.

We call this representation by the Prime-Power Decomposition of n.

One of the results to the Unique Factorization Theorem, we can divide the set of natural numbers into infinitely many levels L_i , where $i \ge 0$ such that $L_0=\{1\}$,

 $L_i = \{a_1, a_2, \dots, a_i : a_1, a_2, \dots, a_i \in P\}$ where $i \ge 1$.

 $\mathbb{N} = \bigcup_{i=0}^{\infty} \mathcal{L}_i \text{ and } \mathcal{L}_i \cap \mathcal{L}_j = \emptyset \text{ , where } i \neq j \ (\bigcap_{i=0}^{\infty} \mathcal{L}_i = \emptyset).$

For any $a \in \mathbb{N}$, $a \uparrow = \{ n \in \mathbb{N} : a | n \} = \{ ma : m \in \mathbb{N} \}$

The collection of upward closed subset of N is $\mu = \{A \subseteq \mathbb{N} : A = A \uparrow\}$ where $A \uparrow = \{n \in \mathbb{N} : \exists a \in A, a | n\}$

(b) Topological Concepts[3,6]

For more details, see [4].

If X is any set, the collection τ of subsets of X is called topology on X if satisfying the following conditions: the empty set \emptyset and X belong to τ , arbitrary union of elements of τ belongs to τ , and any finite intersection of elements of τ belongs to τ . We say that (X, τ) is a topological space. A subset U of X is called an open set if $U \in \tau$, and a subset F of X is called closed if $X - F \in \tau$.

A collection $\mathcal{B} \subset \tau$ is called a base for a topological space (X, τ) if $\tau = \{ \bigcup_{B \in \eta} B : \eta \subset \beta \}.$

A limit point of a set A in a topological space X is a point $x \in X$ such that each open set contained x also contains some points of A other than x. i.e. $A \cap (U - \{x\}) = \emptyset$, for any open set U, $x \in U$, the limit points of a set A denote by A. A set A is closed if and only if contains all of its limit points. Closure of a set A is denoted by \overline{A} , and defined by $\overline{A} = A \cup A$. The set A in a topological space X is dense if $\overline{A} = X$.

Lemma1.2 [5] The collection of upward closed subsets of N defined topology on \mathbb{N} i with the base $\mathcal{B} = \{ n \uparrow : n \in \mathbb{N} \}.$ We denote to a topological space \mathbb{N} with μ by (\mathbb{N}, μ).

Lemma 1.3 [5] In the space (\mathbb{N}, μ) of upward closed subset of \mathbb{N} :

- (a) a is a limit point for $\{b\}$ if and only if $a|b, a \neq b$.
- **(b)** $\{a\}' = \{n \in \mathbb{N}: n | a, n \neq a\}$, for any $a \in \mathbb{N}$.
- (c) *n* is a limit point for A if and only if there exists $a \in A$, n|a, and $n \neq a$.
- (d) $A' = \{ n \in \mathbb{N} : \exists a \in A, n | a, n \neq a \}$ for any $A \subseteq \mathbb{N}$.

2- Downward closed subsets of N

Some of the subsets of N contain all the numbers that are divide their numbers, these sets are called downward closed subsets of \mathbb{N} and the set that contains all of the downward closed subsets of \mathbb{N} is called the collection of downward closed subsets of N as it will be defined in the following definition. **Definition 2.1** [1] (a) For any $a \in \mathbb{N}$,

 $a \downarrow = \{n \in \mathbb{N}: n \mid a\}.$ (b) The collection of downward closed subset of \mathbb{N} is $\nu = \{A \subseteq \mathbb{N} : A = A \downarrow\}$

where $A \downarrow = \{n \in \mathbb{N} : \exists a \in A, n \mid a\}$.

Example 2.1 $1 \downarrow = \{1\}, 3 \downarrow = \{1,3\},$ $P \downarrow = P \cup \{1\}, \{1,2\} \downarrow = \{1,2\},$ $(P \cup \{1\}) \downarrow = (P \cup \{1\})$

Lemma 2.1 (a) $A \subseteq A \downarrow$, for any $A \subseteq \mathbb{N}$. **(b)** $1 \in A$ for any $A \in v, A \neq \emptyset$. (c) \emptyset , $\mathbb{N} \in v$ (d) $L_i \notin v$ for all $i \ge 1$. **Proof**: (a) Obvious. (b) Obvious. (c) It's clear that is $\mathbb{N} \in v$. If there exists $n \in \emptyset \downarrow$, then there exists $a \in \emptyset$ such that n|a, but this is impossible, so $n \notin \emptyset \downarrow$ and $\emptyset = \emptyset \downarrow$. (d) $L_i \downarrow = \bigcup_{i=0}^{i} L_i$ for all $i \ge 1$.

Lemma 2.2 (a) $A^{c} \in \mu$ for any $A \in \nu$. **(b)** $A^c \in v$ for any $A \in \mu$. **Proof:** (a) Let $A \subseteq \mathbb{N}$, $A \in v$. If $A = \emptyset$ or N then $A^c = \mathbb{N}$ or \emptyset , so $A^c \in \mu$. If $A \neq \emptyset$, N, let $n \in \mathbb{N}$, a/n for some $a \in A^{c}$, and if $n \in A = A \downarrow$, then there exists $b \in A$, n/b, so a/b, $a \in A$, so we have a contradiction. Thus $n \in A^c$, $A^c = A^c \uparrow$ and $A^c \in \mu$ (b) Similar to (a) ■

Lemma 2.3 (a) $n \downarrow A \downarrow$ are downward closed sets for any $n \in \mathbb{N}, A \subseteq \mathbb{N}$ (b) If A is downward closed then $A \downarrow = (A \downarrow) \downarrow.$ Proof: (a) Obvious. (**b**) Let $A \in v$, $(A \downarrow) \downarrow = \{n \in \mathbb{N} : \exists a \in A \downarrow, n/a\}$ $= \{n \in \mathbb{N} : \exists a \in A, n/a \} = A \downarrow.\blacksquare$

Lemma 2.4 (a) If $n_1, n_2 \in \mathbb{N}$, $n_1|n_2$, then for any $A \in v$ contains n_2 contains also n_1 **(b)** If $n_1, n_2 \in \mathbb{N}$, $n_1 | n_2$ then $n_1 \downarrow \subseteq n_2 \downarrow$ **Proof:** (a) Let $n_1, n_2 \in \mathbb{N}$, $n_1|n_2$, and let $A \in v$, $n_2 \in A$, so there exists $a \in A$, $n_2|a$, and $n_1|a$. Thus $n_1 \in A$. (**b**) Let $n_1, n_2 \in \mathbb{N}$, $n_1 | n_2$, and let $n \in n_1 \downarrow$, so $n|n_1$, and $n|n_2$. Thus $n \in n_2 \downarrow$, and $n_1 \downarrow \subseteq n_2 \downarrow.$ **Lemma 2.5** (a) If $A \subseteq B$, then $A \downarrow \subseteq B \downarrow$ for any $A, B \subseteq \mathbb{N}$. (**b**) If $A, B \in v$, then $A \cap B \in v$, $(\bigcap_{i=1}^{n} A_i \in v, \text{ where } A_i \in v, i = 1, 2, ..., n).$ (c) If $A, B \in v$, then $A \cup B \in v$, $(\bigcup_{i=1}^{n} A_i \in v, \text{ where } A_i \in v, i = 1, 2, ..., n).$ (d) $\bigcup_{i=1}^{\infty} A_i \in v$, where $A_i \in v$, i = 1, 2, ...**Proof:** (a) Let A, $B \subseteq \mathbb{N}$, $A \subseteq B$, $n \in \mathbb{N}$, $n \in A \downarrow$, so there exists $a \in A$, n|a, so $a \in B$, $n \in B \downarrow$. Thus $A \downarrow \subseteq B \downarrow$. (**b**) Let $A, B \in v$, then $(A \cap B) \downarrow = \{n \in \mathbb{N} : \exists a \in A \cap B, n \mid a\}$ = { $n \in \mathbb{N}$: $\exists a \in A, n \mid a$ } \cap { $n \in \mathbb{N}$ $\exists a \in B, n \mid a \}$ $=A \downarrow \cap B \downarrow = A \cap B.$ (c) Let $A, B \in v$, then $(A \cup B) \downarrow = \{n \in \mathbb{N} : \exists a \in A \cup B, n \mid a\}$ $= \{n \in \mathbb{N} : \exists a \in A, n/a\} \cup$ $\{ n \in \mathbb{N} : \exists a \in B, n/a \}$ $= A \downarrow \cup B \downarrow = A \cup B$ (d) Similar to (c) \blacksquare

Theorem 2.1 (a) If $A \subseteq \mathbb{N}$ is downward closed set, then $A = \bigcup_{a \in A} a \downarrow$. (b) $v = \{ \bigcup_{a \in A} a \downarrow : A \in v \}.$

Proof: (a) Let $A \subseteq \mathbb{N}$ is downward closed set, and $n \in A$, then there exists $a \in A$ such that n|a, so $n \in a \downarrow$, and $n \in \bigcup_{a \in A} a \downarrow$. Thus

 $A \subseteq \bigcup_{a \in A} a \downarrow.$

On the other hand, if $n \in \bigcup_{a \in A} a \downarrow$, then there exists $a \in A$, $n \in a \downarrow$, so n/a, and $n \in A \downarrow$. Thus $\bigcup_{a \in A} a \downarrow \subseteq A \downarrow \equiv A$. Therefore $A = \bigcup_{a \in A} a \downarrow$

(b) By (a) and definition of downward closed \blacksquare

Theorem 2.2 $\bigcup_{i=0}^{k} L_i$, where k = 0, 1, 2, ... are downward closed subsets of \mathbb{N} .

Proof: Let L_j be any level of \mathbb{N} , where j > k, and let $n \in L_j$ then, $n = a_1^{n_1} a_2^{n_2} \dots a_j^{n_j}$ where, $n_1 + n_2 + \dots + n_j = j$, and $a_1, a_2, \dots, a_j \in \mathbb{P}$, so n can't divide any number in L_i , where $i \le k$. Thus $(\bigcup_{i=0}^k L_i) \downarrow = \bigcup_{i=0}^k L_i$ for all $k = 0, 1, 2, \dots$.

3- Downward Closed Topology On $\mathbb N$

The collection of downward closed subsets of \mathbb{N} define topology on \mathbb{N} . This topology gives a connection between the usual divisibility that is defined on \mathbb{N} and the limit points in way similar to the way that gave in the upward closed topology that was defined on \mathbb{N} . Moreover, in \mathbb{N} with this topology the numbers that are in the up levels are limit points to the lower levels.

Lemma 3.1 (a) The collection of

downward closed subsets of N define topology on \mathbb{N} . (**b**) The collection $\beta = \{n \downarrow : n \in \mathbb{N}\}$ is a basis for v. **Proof:** (a) Let $v = \{A \subseteq \mathbb{N} : A = A \downarrow\}$ where $A \downarrow = \{ n \in \mathbb{N} : \exists a \in A, n \mid a \}.$ (1) Since $\mathbb{N} \downarrow = \mathbb{N}$, $\emptyset = \emptyset \downarrow$, then \mathbb{N} , $\emptyset \in \mathcal{V}$ (2) If $A_1, A_2, \dots, A_n \in \nu$, then by (Lemma $(2.5)(\mathbf{b})) \cap_{i=1}^{n} A_i \in v$ (3) Let $A_{\gamma} \in \nu, \gamma \in \Gamma$, then $A_{\gamma} \downarrow = A_{\gamma}$ $\forall \gamma \in \Gamma$ and $(\bigcup_{\gamma \in \Gamma} A_{\gamma}) \downarrow = \{n \in \mathbb{N} : \exists a \ \bigcup_{\gamma \in \Gamma} A_{\gamma}, n \mid a\}$ $=\bigcup_{\nu\in\Gamma} \{n\in\mathbb{N}: \exists a\in A_{\nu}, n|a\}$ $= \bigcup_{\gamma \in \Gamma} (A_{\gamma} \downarrow) = \bigcup_{\gamma \in \Gamma} A_{\gamma}$ So $\bigcup_{\gamma \in \Gamma} A_{\gamma} \in v$. Thus, *v* defined topology on N

(b)By (Theorem (2.1) (a)) for any $A \in v$, $A = \bigcup_{n \in A} n \downarrow$. Thus β is a basis for v.

We denote to a topological space \mathbb{N} with v by (\mathbb{N}, v).

Lemma 3.2 In the space \mathbb{N} with downward closed topology.

(a) *a* is a limit point for $\{b\}$ if and only if $b|a, a \neq b$.

(b) $\{a\}' = \{n \in \mathbb{N}: a | n, n \neq a\}$, for any $a \in \mathbb{N}$. **(c)** *n* is a limit point for *A* if and only if there exists $a \in A$, $a | n, n \neq a$.

(d) $A' = \{n \in \mathbb{N} : \exists a \in A, a | n, n \neq a\}$ for any $A \subseteq \mathbb{N}$.

Proof: (a) (\Rightarrow) Let *a*, *b* $\in \mathbb{N}$, *a* is a limit point to { *b* }, since *a* \downarrow is an open set, *a* \in *a* \downarrow . So {*b*} \cap (*a* $\downarrow -\{a\}) \neq \emptyset$, and *b* \in *a* \downarrow . Thus *b*|*a*, *a* \neq *b*.

(⇐) Let $a, b \in \mathbb{N}$, $b|a, a \neq b$, and let U is an open set, $a \in U$, by (Lemma (2. 4)(a)) we have $b \in U$, so $\{b\} \cap (U - \{a\}) \neq \emptyset$. Thus, a is a limit point to $\{b\}$.

(b) By (a) If $n \in \mathbb{N}$, $a|n, n \neq a$, then *n* is a limit point to $\{a\}$. Thus

 $\{a\} = \{n \in \mathbb{N}: a | n, n \neq a\}.$

(c) (\Rightarrow) Let $n \in \mathbb{N}$, $A \subseteq \mathbb{N}$, n is a limit point to A, since $n \downarrow$ is an open set, $n \in n \downarrow$, so $A \cap (n \downarrow -\{n\}) \neq \emptyset$, and there exists $a \in A$, $n \downarrow$, $a \mid n, n \neq a$.

(⇐) Let $A \subseteq \mathbb{N}$, $a \in A$, $n \in \mathbb{N}$, $a|n, n \neq a$, and let U is an open set, $n \in U$. By (Lemma (2.4) (a)) we have $a \in U$, so $A \cap (U - \{n\}) \neq \emptyset$. Thus, n is a limit point for A.

(d) By (c) if $a \in A$, $a|n, n \neq a$, then *n* is a limit point for *A*. Thus $A' = \{n \in \mathbb{N} : \exists a \in A, a|n, n \neq a\}$

Corollary 3.1 In the space (\mathbb{N}, v) , for any $n \in \mathbb{N}$, n > 1. *n* is prime number or a limit point to $\{n_i\}$ for some *i* where n_i is prime number.

Proof: By (Lemma 1-1) and (Lemma 3.2 (a))

Corollary 3.2 In the space (\mathbb{N}, v) . (a) If a|b, then $\{b\}' \subset \{a\}'$ (b) For any $A \subseteq \mathbb{N}$, A' is upward closed subset of \mathbb{N} .

Proof: (a) Let a|b, and $n \in \mathbb{N}$, $n \in \{b\}'$, then by (Lemma 3.2 (a)) b|n, so a|n, and by (Lemma 3.2 (a)) $n \in \{a\}'$. Thus $\{b\}' \subset \{a\}'$.

References

 B. Sobot, Divisibility order β N arXiv:1511.01731v2 [math. LO] 17 May 2016 **(b)** Let $n \in \mathbb{N}$, a|n for some $a \in \hat{A}$, so by (Lemma 3.2 (c)) $n \in \hat{A}$, and since $\hat{A} \subseteq \hat{A}$, so $n \in \hat{A}$. Thus $\hat{A} = \hat{A}\uparrow$, $\hat{A} \in \mu$.

Corollary 3.3 In the space (\mathbb{N}, μ) . A is downward closed subset of \mathbb{N} , for any $A \subseteq \mathbb{N}$.

Proof: By (Lemma 1.1 (a)) and similar to (Corollary 3.2 (b)) \blacksquare

Corollary 3.4 In the space (\mathbb{N}, v) . $A \subseteq \mathbb{N}$ is closed if and only if for any $a \in A$, a|b. $b \in A$.

Proof:(\Rightarrow) Let $A \subseteq \mathbb{N}$ is closed, and $a \in A$, a|b. So, $b \in A'$, and since the closed set contains all its limit points, so $b \in A$ (\Leftarrow) Let $A \subseteq \mathbb{N}$, $a \in A$, a|b, $b \in A$. So $b \in A'$ and since b is an arbitrary number in \mathbb{N} , so A contains all its limit points and is closed.

Theorem 3.1 In the space (\mathbb{N}, v) , the numbers that are in the up levels are limit points to the lower levels. **i.e.** $L'_i = \bigcup_{j=i+1}^{\infty} L_j$, where $i = 0, 1, 2, \dots$. **Proof:** Let L_i , L_j are two levels of \mathbb{N} , where j > i and let $a \in L_j$, so $a = n_1^{e_1} n_2^{e_2} \dots n_j^{e_j}$ where $n_1, n_2, \dots, n_j \in \mathbb{P}$, $e_1 + e_2 + \dots + e_j = j$. And, let $n = n_1^{e_1} n_2^{e_2} \dots n_i^{e_i} \in L_i$, where $\{n_1, n_2, \dots, n_i\}, e_1 + e_2 + \dots + e_i = i$, so $n \mid a$, and by (Lemma 3.2 (c)) *a* is a limit point to L_i . If $a \in L_k$, where $k \leq i$, then $a \downarrow$ is an open set and $L_k \cap (a \downarrow -\{a\}) = \emptyset$. Thus *a* is not a limit point to L_k . So $L_i = \bigcup_{j=i+1}^{\infty} L_j$, where $i = 0, 1, 2, \dots$

Corollary 3.5 In the space (\mathbb{N}, ν) (a) $(\bigcup_{i=0}^{k} L_{i})^{i} = \mathbb{N} - \{1\}$ for all $k = 0, 1, 2, \dots \dots$ (b) $\overline{\bigcup_{i=0}^{k} L_{i}} = \mathbb{N} (\bigcup_{i=0}^{k} L_{i} \text{ are dense for } I)$

all $k = 0, 1, 2, \dots \dots$).

[2] D. Underwood, Elementary number Theory. Second edition 2008, Dover publications, Inc. Mineola, New York

104

- [3] L. Azriel, Basic set Theory 2002, Dover publications, DJVU, 5.13 MB
- [4] S. Khalifa, A. Abominjil, Levels of Natural Numbers 2022, Gharyan University Journal
- [5] S. Khalifa, Upward Closed Topology On N With Its Effect On The Levels Of N 2022, Zawia University Journal
- [6] S.Willard, General Topology. 2004 Dover Publications, Inc, Mineola, New York, 0-486-43479-6